Some Orthogonal Polynomials in Four Variables
نویسنده
چکیده
The symmetric group on 4 letters has the reflection group D3 as an isomorphic image. This fact follows from the coincidence of the root systems A3 and D3. The isomorphism is used to construct an orthogonal basis of polynomials of 4 variables with 2 parameters. There is an associated quantum Calogero–Sutherland model of 4 identical particles on the line.
منابع مشابه
Solving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کامل. C A ] 4 O ct 2 00 6 A SEMICLASSICAL PERSPECTIVE ON MULTIVARIATE ORTHOGONAL POLYNOMIALS
Differential properties for orthogonal polynomials in several variables are studied. We consider multivariate orthogonal polynomials whose gradients satisfy some quasi–orthogonality conditions. We obtain several characterizations for these polynomials including the analogous of the semiclas-sical Pearson differential equation, the structure relation and a differential– difference equation.
متن کاملDiscrete Orthogonal Polynomials and Difference Equations of Several Variables
The goal of this work is to characterize all second order difference operators of several variables that have discrete orthogonal polynomials as eigenfunctions. Under some mild assumptions, we give a complete solution of the problem.
متن کاملm at h . FA ] 1 9 D ec 2 00 3 RELATIONS ON NONCOMMUTATIVE VARIABLES AND ASSOCIATED ORTHOGONAL POLYNOMIALS
This semi-expository paper surveys results concerning three classes of orthogonal polynomials: in one non-hermitian variable, in several isometric non-commuting variables, and in several hermitian non-commuting variables. The emphasis is on some dilation theoretic techniques that are also described in some details.
متن کامل